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ABSTRACT

- - -State space models describing the energy spectrum of
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Battery alignment is one of the critical factors in

the control of the weapons systems on board naval warships.

The spatial relations of the guns, directors, and launchers

are determined by reference to lines and planes fixed with

relation to the hull and the determination of these

relations constitutes the battery alignment. This alignment

only compensates for the static relations between the

system elements, and so, when these planes and lines

distort in a seaway, the alignment is no longer correct.

Normally, the reference lines used for the alignment

are the ship centerline for train and the plane of the

primary element, usually the director, for elevation. When

the alignment is done, the ship is alongside a pier in a

known condition of loading and in calm seas. At that time

the relations, vertical, horizontal, and transverse,

between the directors and the weapons are measured and

recorded, and the fire control system is adjusted so it

compensates for static parallax when making the fire

control solution. Once the ship goes to sea, these

relations change as fuel is burned, stores used and the

ship moves in waves. The sea, in addition to causing rigid

body motions of the ship hull in heave, pitch, surge, sway,

roll and yaw, also causes it to flex in the vertical and

horizontal planes and to twist about its longitudinal axis.
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This flexing distorts the referance lines established in

the battery alignment and introduces errors in the

targeting solution arrived at by the fire control system.

These errors are due to dynamic parallax, resulting from

relative target location due to ship attitude and flexure.

Studies by the Naval Sea Systems Command, under

contract to Rockwell International E13, have shown that the

flexure of the ship hull of monohull vessels appears to be

significant, relative to rigid body motion. It seems that a

method to measure and compensate for these errors is

necessary to improve the fire control solution and so to

increase the fighting effectiveness of the ship.

Measurement of the flexure could be done directly, for

example by using a system of sighting instruments, and the

results fed to the fire control system as they happen.

Suitable instruments might be Lasers, light beams or strain

gauges. All of these require the primary equipment, along

with its support systems, which are subject to failure and

in addition the system must be aligned and kept in

alignment. This results in an increased maintenance load on

ship's personel, and the reliability problems inherent in

mechanical devices. In addition, this method does not

provide an easy capability to predict what the flexure

might be at some future time, thus allowing correction of

the fire control solution at the actual instant of fire.

An alternative method involves use of a filter to

---



extract deflection information from parameters already

measured on board the ship. The ship's gyroscope provides

ship heading and speed information and in addition it can

provide heave, pitch, roll, sway, and yaw information.

Information regarding wind speed and direction is also

available. Additional information, if needed, might be

found from accelerometers placed at the bow, the stern or

other critical locations. The advantage of using solid

state devices, instead of directly measuring the

deflections, is increased reliability and descreased

maintainace. In addition, the filter formulation lends

itself to prediction of future distortions, which can be

fed to the fire control system.

The objective of this project is the formulation of a

mathematical model of the ship/sea system that can be used

with a filter, the formulation of a filter to estimate the

deflections, and a predictor to estimate future

distortions. The equations discribing the ship can be

written as a set of first order differential equations,

which lend themselves to a state-space model formulation.

It is then natural to use a Kalman filter for the

estimator. This method has already been used to estimate

the rigid-body motions of a ship for input to an automatic

landing system [2,3,41.
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CHAPTER 1: FORMULATION

1.1 Literature Overview

Wave induced ship vibration is the subject of current

interest to many investigators. The beginnings of the

majority of the recent work dates from the late 1969's,

when the performance of large bulk carriers was

investigated by Aertssen £5], Aertssen and De Lembre E6],

Bell and Taylor E7], and Goodman E8]. These papers were

mainly concerned with the statistical nature of the

stresses and bending moments and their prediction,

Aertssen, and Bell and Taylor doing full scale mesurements

and Goodman taking a theoretical approach.

The general trend in the theoretical approaches has

been to use a modal decomposition, as done for example by

Bishop and Price, et. al. (9,16,11,12,133, Chen [14],

Jensen and Pedersen (152, and Kagawa and Fujita £162. This

has an advantage when working with regular waves and for

seperating out the contributions of the various modes.

The problem of the exciting hydrodynamic forces has

been addressed by Salvesen, Tuck, and Faltinsen E17] for

the rigid body motions, using strip theory, providing

linear expressions for the distribution of the wave forces

over the hull. SkjOrdal and Faltinsen 18] have developed a

linear theory for the hydrodynamics of a springing hull.

Jensen and Pedersen (15] provide a non-linear formulation.

. . . . .. . . . . . . . . . . . . .. . . Im ll . . .d . . . . . . .. .. . . . . . . .



Betts, Bishop and Price E193 tie the strip theory approach

together with structural representations.

The use of state space techniques for the prediction

of hull vibration does not seem to have been used by any

researchers as no references were found by the author

discribing this approach.

1.2 Ship Model

There is no established procedure on how to best model

the ship and the sea in order to predict flexural

distortions. One major consideration is the size of the

models which can make the use of state-space techniques

very cumbersome. For this reason, for example, it is best

not to use exact structure and hydrodynamic models, such as

finite element techniques, and instead to try to reach a

compromise between model size and modeling accuracy. A

question arises when trying to combine a structural model,

%uch as modal representation, with a random sea. The sea,

because of dispersion, has a wavelength which is a function

of wave frequency. Even though the random sea may be easily

represented by Fourier techniques at a specific point, its

representation at some other point in space would be the

result of the propogation of an infinite number of

frequency components. How to include these phase shift

effects in a modal analysis is not clear. In addition, the

computational load may be large due to the number of modes

l -9-



required to accurately represent the quasi-static hull

distortion, given that the natural frequencies of the hull

are much higher than the wave frequencies containing the

major part of the wave energy.

The approach used here is to approximate the hull as a

quasistatic non-uniform beam. Using simple beam theory, one

starts by considering a short section, dx, of the hull (see

figure 1.1). The governing equation of the beam vibrating

in a plane of symmetry is found by summing the vertical

forces acting at point 'a'

m(x) dx d/dt(dy/dt) = f(x,t) dx - V(x,t) + V(x,t)+dV/dx dx

= f(x,t) dx + dV/dx dx (1.1)

or

m d/dt(dy/dt) = f + V" (1.2)

Similary, summing the moments about =al one obtains

M'(x,t) - -V(x,t) (1.3)

Then by using (1.22) in (1.21) one finds

m d/dt(dy/dt) f -M' (1.4)

-10i-
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Figure 1.1
Beam Element
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From simple, linear beam theory, one has the relation

M = Ely" (1.5)

I

Using (1.24) in (1.23) one obtains

m d/dt(dy/dt) = f - (Ely'')'' (1.6)

which is the governing equation for vertical vibrations of

a beam.

If damping is allowed, then one has

I
m d/dt(dy/dt) + b dy/dt + (Ely')" = f (1.7)

Once one has the governing equation, the next step is

to express it in a state-space form. To do this, let xl = y

and x2 = dy/dt. Then with this coordinate transformation,

(1.26) becomes

dxl/dt = x2
(1 .8)

dx2/dt = -(EIxl'')'' / m - b x2 / m + f

The next step is to represent the space derivative.

Using a finite difference approach, one lets h = c:, the

-12-



distance between points on the hull. Then if there are N

points,

L - (N-1)h (1.9)

where L is the length of the ship. Expanding the space

derivative, one has

(El xl'')'" = El'' xl'" + 2 El' xl''" + El xl'''" (1.18)

Now each part can be represented seperately by finite

differences, with El, El', and El'' as input data.

At the ends of the ship, the conditions of zero shear

and zero bending moment lead to

El xl'' - $

(El xl'')' = 9

- Ell xl'' + El xl'''

Equations (1.29) with boundary conditions (1.291) can

be represented to the order desired and will result in the

formation of a set of equations, written in matrix form as

-13-



dC1/dt - AI*X) + BI*E
=(1.12)- -Y = C1 *Xl

where

X = (xll,x12,x21,x22,... ,xNlxN2)

xii = x sub 3 at point i

Y = vector of responses at the N points.

A = a 2N x 2N matrix containing the finite
difference representation.

E= (fl,f2,...,fN)

B - distributes the fj's to the proper state

-14-
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1.3 Sea Spectrum

Ocean waves are a function of both the wind speed and

duration, among other parameters. One of the commonly used

wave spectra that attempt to account for these two factors

is the Bretschneider Spectrum, in which the intensity is

specified by the significant wave height, H, and the

duration by the modal wave frequency, Wm. This spectrum has

the following form. 0

S(w) = 1.25 H**2 Wm**4 exp(-1.25(Wm/w)**4) (1.13)
4 w**5

The movement of a ship through the water causes it to

experience excitation not at te wave frequency, w, but at

the encounter frequency, we, where

we M w - IU cos(beta) (1.14)

The energy of the waves remains the same, however, so

that

-15-
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S(w)dw S(we)duwe "(1.15) 0

- S(w) clw lw*e

therefore

S(we) * S(w)
€we
dw

where the modulus of dve/dw is used because S(we) is single

sided.

Triantafyllou and Athans (2] have found a rational

approximation to (1.39) in the following form

S(we) = 1.25 H**2 B(alpha) we**4 (1.17)
4Wm (1+(we/wo)**4)**3

where

-16-



alpha - U Wm cos(beta) (1.18) .

B(alpha) - 1.9339 (1.19)

1+2 alpha

wo(alpha) = Wm(lalpha) (1.26)
0.8469

The corresponding causal system is

H(s) = So s**2 (1.21)
(1 +2J(s/wo)+ (s/wo) **2) **3

where

So = 1.25 H**2 B(alpha) (1.22)
4 Wm •

J - 6.787

By writing (1.38) in standard state space form (see

chap 2) one has

dXs/dt = As*Xs * Bs*p (1.23)

ys = Cs*Xs

-17-



whore p is white noise of intensity q and

-wo**2 -2Jwo S wo**2 0 0
Asua 0 S S 1 9 0 (1.24a)

s-a -wo**2 -2Jwo a wo**2

S S S S -wo**2 -2Jwo

8sl- C S 9 9 S 9 pi~o* 33  (1.24b)

Cs - So 9 9 9 S S 1 (1.24c)

Since white noise has a constant spectrum for all

frequenc ies

Sp(w) -q (1.25)

and

Sp(w) - 14(w) **2 S(w)

- wo**3 So we**4 wo**4 (1.26)
(wo**4 + we**4)**3

one may idenitify the intensity as

q -pi wo**3 So (1.27)



and the driving noise is taken as

p W99S1) (.8

with pi wo**3 So included in the model B matrix.



1.4 Sea Model

The representation of the sea must take account of the 0

dispersion of the waves in space and still allow for their

random nature. If the relation between driving point 1, pl,

and distant point 2, p2, is dependent on a fixed wave

number, then the sea at p2 will not be properly related to

pl. To find a relation that will give the correct relation

between p1 and p2, one starts with Laplace's equation and

the free surface condition:

Oxx + Qzz - 0 in the fluid
(1.29)

Ott + g Oz 0 0 on the free surface

Then by assuming that the potential can be written as

Q(x,zt) = U(xt) exp(kz) (1.38) 0

and substituting (1.41) into the free surface condition,

one finds

Ott + gQz = (Utt + gkU) exp(kz) (1.31)

If the deep water dispersion relation, k = w**2/g, is used,

(1.42) reduces to S

-29-



Utt + w**2 U = 8

or

Utt - Utt - 8

showing that the free surface condition is satisfied as

expected. Then substituting (1.41) into the Laplace

equation, one obtains

g**2 Uxx + Utttt = 8 (1.32)

It is intresting to note that (1.43) may be obtained

from the wave equation by using the expression for wave

phase velocity in deep water.

c =w/ k

and

Wtt - c**2 Wxx = 8

from which

Wtt - w**2/(w**2/g)**2 Wxx = 9

or

w**2 Wtt - g**2 Wxx = 8 S

and since w**2 W = -d/dt(dW/dt)

Wtttt + g**2 Wxx = 0

Equation (1.43) can now be represented by finite

-21-



difference equations in space and as a se-t of first order

equations in time as

d(v/dt - Av*Xv + Bv*ys

E - Cv*Xv + Dv*ys (.3

where

Xv' - (uII,u12,uI3,u14,u21,...,uN4)

ujI = Uj at the i-th point

uj2 = dUj/dt

uj3 = d/dt(dUj/dt)

uj4 = d/dt(d/dt(dUj/dt))

E vector of wave elevations at the N points

-22-



1.5 Force Model

The hydrodynamic exciting forces on a ship hull by sea

waves have been studied for many years. The approach that

seems the most fruitful for this project is the strip

theory. Of the several forms available 116,19], the method

of Gerritsma and Beukelman [19] will be used here.

The hydrodynamic exciting force on the ship may be

discribed as being the result of the difference between the

deflection of the ship hull and the wave profile, z=y-w.

Then Gerritsma and Beukelman have proposed that the force,

F(x,t), acting on the ship may be written as

F(x,t) - DFMa(x) Dz R)* +rBxz (1.34)
5tDt

where

D = d - d dx = d - U d
dt dx dt dt dx

Then, using z=y-w, and writing the force as

F(xt) - -H(x,t) + Z(x,t) (1.35)

where

H(x,t) = Ma(x) Day + N(x)-U dMa Dy + rgB(x)y (1.36)
DtA dx Dt

Z(x,t) = Ma(x) Daw + N(x)-U dMa Dw + rgB(x)w (1.37)
t-

the force can be seperated into the part due to the hull

motions and the part due to the waves. The part due to the

-23-



hull vibrations may be moved to the left hand side of the

equation and included in the structural model. The wave

exciting forces then may be written in a form that may be

used in the state-space formulation. Then the C-matrix and

D-matrix of the sea model are modified with equation (1.53) 6

to output the force instead of the elevation. The output

matrix of the spectral model is modified to output the

first and second time derivatives of the wave elevation in

addition to the elevation itself.

1.6 Total model 6

The models for the sea spectrum, the sea surface, and

the ship can be combined into one model by identifying the

output of one with the input of another in cascade fashion. S

dX/dt = A*X + B*p
(1.38)

Y = C*X

where

A Bl*Cv BI*Dv*Cs

A = 9 Av Bv*Cs
6 6 As

B" = E a 6 Bs, I

C Cs 8 8

X" = ( XI" Xv" Xs' )

p - N(8,1)

-24-
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CHAPTER 2: STATE SPACE TECHNIQUES

2.1 State Space Models

In order to apply Kalman Filtering techniques, one

must formulate the problem in the form of a state-space 0

model. This is a set of first order differential equations

that discribe the dynamics of the system, its inputs, and

its outputs. 0

The state of a system may be defined at any time as a

minimum (not neccessarily unique) set of parameters which

must be specified to discribe that system. A state vector 0

is a vector composed of these parameters (state variables).

The number of state variables required is equal to the

order of the system, n.

For example, a simple mass-spring-damper system is

discribed by a second order differential equation.

m*d/dt(dz(t)/dt) + b*dz(t)/dt + k*z(t) = f(t) (2.1)

Then one may define the state variables as the

position, z, and the velocity, dz/dt, of the mass. Next let

xl = z and x2 = dz/dt. With this change of variables, (2.1)

may be written as

dxl/dt = x2
(2.2)

dx2/dt = -k/m*xl - b/m*x2 + f/m S

-25-



or in matrix notation

dX/dt = A*X + B*F (2.3)

where

A -k/m -b/m

B'-= E 1 3

X ( xl x2 ) S

Alternatively, because the state variables are not

unique, one may define the state variables as the force in

the spring, K, and the momuntum of the mass, P. A

transformation may be found from one to state vector to the

other by using

K - k*z
(2.4)

P = m*dz/dt

One may also define an input vector U, containing the

r inputs to the system and an output vector, Y, containing

the m outputs. The system equations are then a set of n

first order differential equations

dxl/dt = fl(X,U,t)

* * (2.5)

dxn/dt = fn(XU,t) 0

-26-



or

dX/dt - F(X,U,t) (2.6)

The output equations relate the output vector, Y, to -

the state vector and the input vector

yI = gt(X,U,t)

ym = gm(X,U,t)

or

Y = G(X,U,t) (2.7)

-27-



If the system is linear or linearized, one may write

the functions fi and gi as linear combinations of the 0

states and the inputs.

n r

dxi/dt = aij*xi + bij*uj (2.8)

yK = ckj*xj + dkj*uj (2.9)

i = [1,n]

k = I ,m3

In matrix notation this becomes

dX/dt - A*X + B*U
(2.18)

Y = C*X + D*U

where A is an n x n matrix discribing the system

dynamics, B is n x r and discribes the d stribution of

inputs, C is an m x n matrix discribing the distribution of

states to the outputs, and D is a m x r matrix discribing 0

the distribution of inputs to outputs. The form discribed

by (2.18) is known as Standard State-space Form.

2.2 Kalman Filter

In this problem the object is to be able to estimate

the flexural response of the ship hull at time t and from 0

this to predict what the response will be at time t+dt. To

-28-



do this, one common method is to use the Kalman Filter.

This is a method which derives an optimal (in the least 0

squares sense) estimator for the state of a system

represented by a state-space model.

Assume one has a mathematical model of the system 0

under consideration,

dx/dt = A*x + B*w 6
(2.11)

P = C*x

where w is white noise of intensity 0, the expected value

of x at t-B, Elx(8)J, is xO = 8, and the covariance of x at

t-0, E~x(B)x'(B)1, is XB. Assume further that one has 1

measurements, z, which are related to x by

z = M*x + v (2.12)

where v is measurement noise, modeled as white noise of

intensity R, uncorrelated with the process noise, w.

Also assume that the system is observable, meaning

that the initial condition of any state may be found by

measuring the output for a finite period of time.

Then one may propose an observer of the form

dy/dt = A*y + K*( z - M*y ) (2.13)

y(O) = EE x(B) 1 = B

K is known as the Kalman gain matrix.

-29-
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One may then define the error in the state estimate as

e = y - x (2.14)

and the error covariance as

P - EE eel 2 (2.15)

It may be shown C233 that the equation which controls

propagation of the error covariance is

dP/dt = (A-KM)P + P(A-KM)' + KRK' + BQB, (2.16)

P(s) = X(B) =X8

Examining the covariance matrix, P, finds that the

diagonal is made up of the variances of each of the states,

P E ee 3 @e e2 ... en I

. .Ion

e**2 el*e2 . . .
e2*el e2--2. . .

a • a (2.17)•

I . . en**2

So if one takes he Trace of P

-30-



- -~------ - - - - -- - - - -

n

Tr(P) = ei**2 (2.18) S

i-I

one has the sum of the squares of the errors in each of the

states. Athans E23] shows, using the matrix minimum

prinicipal, that the K that minimizes the Trace of P, ie;

the sum of the squares of the error, is

K = PM"R (2.19)

If, as in the present case, none of the matrices AB,M,Q

and R are functions of time, then dP/dt -) 8 in the steady

state solution, and one has

8 - AP + PA' + BB' - PM'R MP (2.20)

Summarizing, then, if one has a linear system

described by

dx/dt - A*x + BNw
(2.21)

p " Cx

one may estimate, with minimum square error, the state x by

using y which is described by the equation

dy/dt - A*y + K(z-My) (2.22)

K = PM'R (2.23)

-31-



with P given by (in the steady state case)

8 = AP + PA' + BOB' - PM'R MP (2.24)

Software packages exist, for example CTRLC [26], which will

solve 2.24 for the steady state values in P and so for the

values in K.

Once the values of the state at time tO are known,

either from direct measurement or from estimates, the r..xt

task is to predict the the states at some future time,

tf=tB+dt. To do this, one may solve 2.291 subject to

x(t)-x8 as

x(t) - exp(A(t-t))*x s))w(s)ds (2.25)

jto

Now, suppose that at time tO, one wants to predict

x(tB+dt). Then

tf

x(tf) - expcA(dt))*xO + expCA(tf-s))Bw(s)ds (2.26)

to

but tO<s(itf is some future time and w(s) is unknown

because w is random. In fact, since w is white noise and so

completely random, it is completely unknown and the est
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estimate of it is its average value or expected val-ue,

EE w(t) ] = 8 (2.27)

Therefore, the best estimate of x(tf) is

xp(tf) = exp(Adt)*y(tO) (2.28)

where y has been used in the initial condition because it 0

is obtained from the Kalman filter.
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2.3 Approximations

The question of the order of the finite difference 0

representation will be addressed next. The accurarcy of the

distortion results are dependent on that order. For just

one point of the ship model, say j, equation 1.27 can be 0

written as (with i understood in the coefficients)

dxjl/dt = xj2 B
(2.29)

dxj2/dt - -El xil'''' - Ell xil''' -

m m

El'" xi'' - b xj2 + f
m m m

Since the highest derivative in x is the controlling factor

in the discretation error, the case of a uniform ship, with

El' and Ell' both equal to zero will be investigated. The

method used will be that used by Smith £23].

At point j, (2.38) becomes

dX/dt = A*X"" + D*X + F (2.36)

where the matrix A is

0 B

-El/m 8

and D is 0°  0
0 -b/m
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and F is

41m

Nou write the fourth derivative of X as

X(j)"'' - X(j+2) -4X(j+1) + 6X(j) - 4X(j-1) + X(j-2)
h**4 (2.31)

Using (2.32) in (2.31), one finds

dX(j)/dt = A X(j+2) -4AX(j+1) + 6A X(j)
h**4

- 4AX(i-I) + AX(j-2)
h**4

+ D X(j) (2.32)

and expanding the X(j+I) by Taylor series

X(jsI) = X + h*X' + I h**2*X'" + 1 h**3*X''' + ... (2.33)
2! 3

Substituting (2.34) into (2.33), keeping terms to order

h**8 and collecting terms leads to

dX(j)/dt = A*X"''' + D*X + F +

( _.A*XIE*h**2 ) + ( I *A*XM*h**4 ) (2.34)
6 88
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where the term in the first bracket can be interpeted as

the order h**2 error and that in the second bracket as the S

order h**4 error.

In order to see the effect on a particular solution to

(2.39), consider the solutions of the natural modes of a 0

uniform beam C22]. The space dependent part is composed of

sinusoids and hyperbolic functions in the variable kx.

w(x) = sin(kx) + sinh(kx) + s*( cos(kx) + cosh(kx) ) (2.35)

where s is a constant dependent on the mode.lf L is the

length then

kL - (j+ )*Pi

defines the approximate values of k. Taking the eight

dirivative of (2.35) brings out a k**8 term, so

w - k**8*w

and (2.31) can be written as

dX/dt A*X''" * D*X + F + E (2.36)
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where

E = 1 A*X-*h**4

= 1 A*k**8*X*h**4

80 0

Then since

k**4*X =

one may write

dC/dt = A*X'" C 1 + 1 *h**4*k*4 ) + D*X + F (2.37)
ii

Then the relation between the point spacing and the error

may be found from the second term in the brackets

e = 1 *h**4*k**4
so

If the maximum desired error is eo, then

h**4 < 88* eo
k**4-
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0

or

h < 2.99*L eo (2.38)
(j +) Pi

By similar means the relation for order h-squared can 0

be found to be

h < 2.45*L •o (2.39) 0
(j+k)Pi

Table 2.1 shows h vs. eo for both orders for the

springing mode, and table 2.2 shows h vs. j for a fixed

eomS.125. Length is 18 meters.

Table 2.1

h vs. eo (j1l)

h**2 h**4

eo h Npts h Npts

8.5 36.76 3 53.35 2

0.25 26.08 4 44.87 3

8.125 18.36 6 37.73 3

8.8625 13.88 8 31.72 4
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Table 2.2

h vs. j (eo = 0.125) 0

h**2 h**4
h Npts h Npts

1 18.38 6 37.73 3
2 11.03 9 22.64 5
3 7.88 13 16.17 7
4 6.13 17 12.58 8

The most obvious fact to be gained from Table 2.1 is

that for a given accuracy, the number of points and hence

the number of states is much less with the order h**4

approximation. Each added point requires six additional

states in the total model, two for the ship model and four

for the sea model. However, only five points are required

to approximate the fourth direvative to order h**2 but

eight points are required for order h**4. These numbers set

the minimum number of points required for any accuracy.

As the number of nodes in the vibration increases, the

number of points for a given accuracy increases rapidly, as

seen in Table 2.2. Again, the order h**4 approximation is 0

the less restrictive of the two. It only requires 8 points

to achieve 12.5% accuracy with order h**4, while 17 points

are required for the order h**2 approximation. 0

This means that while it is possible to use an order

h**2 approximation, an actual inplementation will require

both a higher order and a greater number of points. S
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CHAPTER 3: NUMERICAL RESULTS

3.1 Stability of Models

The mathematical models of the sea spectrum and the

ship structure are stable as modeled. However the force

model is not. The fourth order equation discribing the sea

surface has four solutions, two of which are exponentials,

and it is these solutions that can cause instability. The

equation is

Utttt + g**2 Uxx 8 (3.1)

which has solutions in the form

U(xt) - C exp(iwt), exp(-iwt), exp(wt), exp(-wt) }
(3.2)

The exponential roots, in the analytical problem, are taken

care of by the initial conditions. When using a computer,

however, even if the initial conditions are set equal to

zero subsequent round-off errors introduce fictitious

non-zero initial conditions, which excite growing

exponent i al s.

To see this, consider the simple example

Ytt - a**2 Y = 8 (3.3)

Y(8) -8

Y(infinity) = 8

which has the analytic solution

Y(t) = A exp(at) + B exp(-at) (3.4)
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By approximating this by finite differences, one obtains

Ytt - Y(i+l) -2*Y(i) + Y(i-1) = a**2 Y(i) (3.5)
h**2

or

Y(i+1) -(2 + (ah)**2) Y(i) + Y(i-1) - 0

To solve this finite difference equation, take

Y(n) = r**n

then one obtains 0

r**2 -(2 + (ah)**2) r + I = 8

and then for h ( 1/a

r - I + ah + O(ah**2)

and

r - 1 - ah + O(ah*2)

Then taking a linear combination of the solutions

Y(n) = A (1 + ah)**n + B (I - ah)**n (3.6)

it can be seen that no matter how small A is, if it is not

exactly equal to zero, the part of the solution involving

the growing exponenitial will eventually dominate the S

solution, swamping the correct solution. If the objective

were only to obtain the solution to the equation, one might

try integrating backwards in time. Here though, the 3

objective is to produce the solution in real time, so the

equation must be integrated forward in time.

This is not as severe a problem as it might seem at first S

look. One of the properties of the Kalman Filter is the
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stabilization of the filter model. The gain that results

will result in a closed loop observer matrix,

Acl - A - K*C

that has all its eigenvalues in the left-half plane. The

only place the problem arises is in simulation of the

system. By defining a reconstruction error, e=x-xhat, and -

using the expressions for x and xhat, it can be seen that

the error must obey the differential equation

0

de(t) - [A-KC3 e(t) (3.7)
dt

This means that the reconstruction error goes to zero as t

becomes large only if the closed loop observer m.Atrix is

asymptotically stable.

Simulation of the system is necessary to test the S

observer as the model is varied. The method used is to sum

a number of sinusoids, each of which has an amplitude

proportional to the energy in the sea spectra at that wave S

frequency and a phase that is random with respect to the

phases of the other sinusoids.

Assume that we are given a sea spectrum, S(w), and we -

wish to simulate the sea elevation at a number of points.

Since the instantanous sea elevation at a point x and

frequency w can be represented as the square root of the 0

energy at that frequency (multiplied by 2 since the sea
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spectra is only defined from 8 to infinity),

V(x,w) =12 S(xw)'

then the elevation at x, including all frequencies should

be

V(x) = Re( 2S(w) € ' exp( ip(w) )) (3.8)

where p is the random phase. Then including the time factor

one has

V(x) = Re( 2 d(w) l' expC i(wt + p(w) )) (3.9)

For a computer simulation, equation (3.9) must be

discretized to become

Nw

V(xt) (N2 S(wj) Awi' cos( wit + p(wj) ) (3.18)

j=1 -

where here p is a random number uniformly distributed

between S and two pi. 0

The simulated sea surface is then used to drive the
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ship model to form a simulation model, the output of which

is used as a source of the measurements supplied to the

observer model. This model was run and the results stored

in a computer file for later use. Figure 3.1 shows a

representative run of the simulation.

3.2 Estimation and Prediction with Correct Model

The Kalman filter for the total model is required to

construct optimal estimates of the states of the system

that can be used to predict the future output of the

system. This includes those states that cannot be measured

directly, such as those of the sea. To do this it must have

a source of information about the system.

The filter gains are affected not only by the model

used but also by the noise in the measurements themselves.

This noise results from a number of sources. For example,

from measuring instrument noise, slamming of the hull,

local vibration effects and vibrations excited by external

sources. The filter then must reject the higher frequency

noise to obtain the needed information about the states.

The measurements are found from

z = y + v, v - N(O,R) (3.11)

where R is the measurement noise covariance matrix, defined

as the expected value of the noise process
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R - EC vv' ) (3.12)

Then what is needed are estimates of the measurement noises

that would be encountered in an actual ship hull. Using

studies of ship vibration, the noise covariance for

displacement was taken as

r(i,i) - 3.8 E -4 meters squared

at amidships. According to Lewis [27], the amplitude

amidships will be equal to about 8.25 the value at the end

for machinery induced vibration. For velocity of 0

displacement a covariance of

r(i,i) - 6.8 E -1 meters squared / second squared

at amidships was used. All off diagonal values were assumed

to be equal to zero, implying that the measurement points

are isolated from each other.

The filter was calculated using the models for the sea

spectra, forces and ship in cascade. This allowed an

investigation to determine the required measurements to

insure the observability of the system. In addition, the

filter pole locations were determined. For the Great Lakes

Ore Carrier Stewart J. Cort, described in Appendix A, the

poles were all located at a frequency of less than 1.85

radians per second. The pole locations are shown in Table S

3.1 for the output matrix
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C 1 e see 9 (3.13)
9 080810888

This output matrix provides measurements of the

displacement. The resulting displacement estimation errors 0

are given in Table 3.2 and Figures 3.2 and 3.3 sho the

estimated value compared with the simulated value. The

noisy signal is shon in figure 3.4. 0
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Table 3.1
Kalman Filter poles 0

-6.29E-4 + i 2.07
-7.88E-3 + i 1.88
-9.88E-4 + i 7.38E-1
-6.97E-3 + i 6.46E-1
-1.58E-2 + i 4.75E-1 0
-6.39E-1 + i 6.58E-1
-5.48E-1 + i 6.22E-1
-6.32E-1 + i 5.51E-1
-4.75E-1 + i 1.33E-2
-7.37E-1 + i 4.92E-4
-6.46E-1 + i 4.68E-3 0
-5.85E-3 + i 4.88E-2
-6.89E-4 + i 4.88E-2

Table 3.2
RMS Estimation errors.

(meters)

9.56E-2
9.36E-2
I.54E-1
9.50E-2

Prediction of the future values of the states, given

the current measured or estimated values can be done by the

equat ion

dxp = A * xp (3.14)
dt

xp(8) = xhat(O)

If A is stable, the predicted value will go to zero as time

gets large. The objective then is to determine how far in

the future the prediction is acceptable. If dt is the

prediction time step, the actual prediction becomes S
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xp(t) - exp( A *dt ) * xhat(t) (3.15)

which involves matrix-vector multiplication only.

For this system, a number of prediction models were

tried, but none gave usable predictions. The first model

tried was to use the unstabilized system, but as expected,

the output immediately started growing.

Next, the system model was stabilized by using a very

high measurement noise to calculate the feedback gain. For

this model, the predicted deflections showed an initial

change in the same direction as the true value but rapidly

decreased in amplitude to about one tenth of its amplitude.

The phase of the prediction was very close to that of the

true deflection.

Another method tried was to stabilize the model of the

sea surface only. This resulted in a stable total model but

no improvement was seen in the prediction. Here the

predicted value rapidly diverged from the true value after

about four time steps and the phase showed no apparent

relation to that of the true phase.

Finally, a prediction was tried by using only the

model of the ship. This was even less successful as the

prediction immediately diverged from the true, often

increasing when the true value was decreasing, and

vice-versa.

Though prediction was not acheived by any of these

models, this does not mean that prediction can not be done.
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It is one of the underlying ideas of the state space

technique that all necessary i'nformation about a system is

included in the state of the system at any time. Prediction

models that bare investigation are: (1) stabilize the sea

surface model by treating it as a regulator problem and

selectively choosing the elements in the control weighting

matrix to limit the wave amplitude, (2) try the same method

on the total model, (3) a useable, if short prediction may

result from the second method tried if the time step is

reduced, (4) use the first method tried but scale the

predicted output.
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CHAPTER 4: DISCUSSION

The problem addressed in this thesis is the estimation

of ship hull vibrations from a minimum number of measured

parameters. These estimations are then used to predict the

future deflections of the ship hull.

The first step was to develop a mathematical model of

the ship-sea system in state-space form. This involved

three seperate models. The first, which models the sea

power spectrum, was taken from the literature. This model

is based on the ITTC ocean spectrum that uses as parameters

the modal wave frequency and the significant wave height.

In this spectra, the modal frequency can be taken as

4.47/Tave, where Tave is the average period measured at the

calm water level. The significant wave height may be taken

from table 4.1 if no measurements are available.

Tab _Le .1
wind speed (knots) sig. wave height (m)

20 3.1
38 5.1
46 8.5
56 11.8
68 14.6

The model to include the dispersion relation for sea

waves was developed from a velocity potential

representation of the sea, resulting in an unstao;c model.

The instability was due to the increasing exponential
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solution to the resulting fourth order in time differential

equation.

The third model models the ship hull itself. This was

derived by assuming that the ship could be represented as a

simple beam. Then a composite, continuous time, discrete

space, finite difference representation of the simple beam

equation was used for the final model. The model was

developed using a second order finite difference

approximation but for an actual application, a fourth order

approximation should improve the accuracy to a significant

degree.

Gerritsma and Beukelman's relation relating the wave

height to force on the ship was used to couple the sea

model with the hull model. Since in a state-space

formulation the time derivatives of the wave height and the

deflection are available in the state vector, implementing

the force model simply required additional terms in the

output matrices of the sea spectra and sea surface models,

and added terms in the hull system matrix.

Using these models, CTRLC C26], a software package for

control system design, was used on a Digital VAX-11/782 at

the Joint Computer Facility to do the simulations, develop

the filter gains and evaluate the sensitivity to errors in

the model. The estimation of the deflections of the hull

could be done well with the state space model developed.

The prediction of the deflection to some time in the future
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was not successful using the models developed here, but

with improved models it could be possible.
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APPENDIX

PREDICTION RESULTS

The several methods of prediction attempted gave less

than satisfactory results when compared to the simulated

signal. Figure A.1 shows the prediction that resulted from

using the system model stabilized by using a very large

measurement noise. This resulted in a predicted value that

was much larger than the simulated value. The same general

pattern resulted when the measurement noise was varied from

a low equal to the expected measurement noise to as high as

could be computed. Nor did changing the starting point of

the prediction with relation to the phase of the simulated

signal improve the prediction.

The next figures show the prediction resulting from a

model constructed by stabilizing the sea-surface model

before forming the total model. In Figure A.2, the

predicted signal is very similar to the prediction in

Figure A.I. If just the first few time steps are plotted,

it can be seen that the predicted signal does not track the

simulated signal even for a short period of time, Figure

A.3.

Finally, Figure A.4 shows the results of using only

the ship model to do the prediction. As can be seen, this

prediction has no apparent relation to the simulated

signal.
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